Содержание
- 1 Фазовращатель в ДВС. Что это такое и основной принцип работы. Разберем VVT, VVT-i, CVVT, VTC, VANOS, VTEC и прочие
- 1.1 Зачем вообще нужны фазовращатели?
- 1.2 Принцип работы
- 1.3 VVT (Variable Valve Timing), KIA-Hyundai (CVVT), Toyota (VVT-i), Honda (VTC)
- 1.4 Honda (VTEC), Toyota (VVTL-i), Mitsubishi (MIVEC), Kia (CVVL)
- 1.5 Плавное включение или Fiat (MultiAir), BMW (Valvetronic), Nissan (VVEL), Toyota (Valvematic)
- 1.6 FreeValve
- 2 Система изменения фаз газораспределения
- 3 Регулирование фаз газораспределения ДВС
- 4 Фазы и механизм газораспределения — как это работает и на что влияет
- 5 Система изменения фаз газораспределения, принцип работы VVT
Фазовращатель в ДВС. Что это такое и основной принцип работы. Разберем VVT, VVT-i, CVVT, VTC, VANOS, VTEC и прочие
Эффективность двигателя внутреннего сгорания зачастую зависит от процесса газообмена, то есть наполнения воздушно-топливной смеси и отвода уже отработанных газов.
Как мы уже с вами знаем, этим занимается ГРМ (газораспределительный механизм), если правильно и «тонко» настроить его под определенные обороты, можно добиться очень не плохих результатов в КПД. Инженеры давно бьются над этой проблемой, решать ее можно различными способами, например воздействием на сами клапана или же поворотом распределительных валов …
Чтобы клапана ДВС работали всегда правильно и не были подвержены износу, вначале появились просто «толкатели», затем гидрокомпенсаторы, но этого оказалось мало, поэтому производители начали внедрение так называемых «фазовращателей» на распределительные валы.
Зачем вообще нужны фазовращатели?
Чтобы это понять что такое фазовращатели и зачем они нужны, прочтите для начала полезную информацию.
Все дело в том, что двигатель работает не одинаково на различных оборотах.
Для холостых и не высоких оборотов идеальными будут «узкие фазы», а для высоких – «широкие».
Узкие фазы – если коленчатый вал вращается «медленно» (холостой ход), то объем и скорость отвода отработанных газов также невелики.
Именно здесь идеально применять «узкие» фазы, а также минимальное «перекрытие» (время одновременного открытия впускных и выпускных клапанов) – новая смесь не проталкивается в выпускной коллектор, через открытый выпускной клапан, но и соответственно отработанные газы (почти) не проходят во впускной. Это идеальное сочетание. Если же сделать «фазирование» — шире, именно при невысоких вращениях коленчатого вала, то «отработка» может смешаться с поступающими новыми газами, снизив тем самым ее качественные показатели, что однозначно снизит мощность (мотор станет неустойчиво работать или даже заглохнет).
Широкие фазы – когда обороты растут, соответственно растет и объем и скорость перекачиваемых газов.
Здесь уже важно быстрее продувать цилиндры (от отработки) и быстрее загонять в них поступающую смесь, фазы должны быть «широкими».
Конечно же руководит открытиями обычный распределительный вал, а именно его «кулачки» (своеобразные эксцентрики), у него есть два конца – один как бы острый, он выделяется, другой просто сделан полукругом. Если конец острый — то происходит максимальное открытие, если округлый (с другой стороны) – максимальное закрытие.
НО у штатных распределительных валов – НЕТ регулировки фаз, то есть они их не могут расширить или сделать уже, все же инженеры задают усредненные показатели – что-то среднее между мощностью и экономичностью.
Если завалить валы в одну из сторон, то эффективность, либо экономичность двигателя упадет.
«Узкие» фазы, не дадут ДВС развивать максимальную мощность, а вот «широкие» — не буде нормально работать на малых оборотах.
Вот бы регулировать в зависимости от оборотов! Это и было изобретено – по сути это и есть система регулирования фаз, ПОПРОСТОМУ — ФАЗОВРАЩАТЕЛИ.
Принцип работы
Сейчас не будем лезть вглубь, наша задача понять, как они работают. Собственно обычный распредвал на конце имеет распределительную шестерню, которая в свою очередь соединяется с ремнем или цепью ГРМ.
Распредвал с фазовращателем на конце имеет немного другую, измененную конструкцию.
Здесь располагаются две «гидро» или электроуправляемые муфты, которые с одной стороны также зацепляются за привод ГРМ, а с другой стороны с валами.
Под воздействием гидравлики или электроники (есть специальные механизмы) внутри этой муфты могут происходить сдвиги, таким образом, она может немного поворачиваться, тем самым меняя открытие или закрытие клапанов.
Нужно отметить, что не всегда фазовращатель устанавливается на два распредвала сразу, бывает что один находится на впускном или на выпускном, а на втором просто обычная шестерня.
Как обычно процессом руководит ЭБУ, которая собирает данные с различных датчиков двигателя, таких как положения коленчатого вала, холла, частота вращения двигателя, скорости и т.д.
Сейчас я вам предлагаю рассмотреть основные конструкции, таких механизмов (думаю так у вас больше проясниться в голове).
VVT (Variable Valve Timing), KIA-Hyundai (CVVT), Toyota (VVT-i), Honda (VTC)
Одними из первых предложили поворачивать коленвал (относительно начального положения), компания Volkswagen, со своей системой VVT (на ее основе построили свои системы много других производителей)
Что в нее входит:
Фазовращатели (гидравлические), установлены на впускном и выпускном валу. Они подключены к системе смазки мотора (собственно это масло и закачивается в них).
Если разобрать муфту то внутри есть специальная звездочка наружного корпуса, которая неподвижно соединена с валом ротора. Корпус и ротор при накачивании масла могут смещаться относительно друг друга.
Механизм закрепляется в головке блока, в ней есть каналы для подводки масла к обеим муфтам, контролируются потоки двумя электрогидравлическими распределителями. Они кстати также закрепляются на корпусе головки блока.
Помимо этих распределителей в системе много датчиков – частоты коленчатого вала, нагрузки на двигатель, температуре охлаждающей жидкости, положения распред и колен валов.
Когда нужно повернуть откорректировать фазы (например — высокие или низкие обороты), ЭБУ считывая данные дает приказания распределителям подавать масла в муфты, они открываются и давление масла начинает накачивать фазовращатели (тем самым они поворачиваются в нужную сторону).
Холостой ход – поворачивание происходит таким образом, чтобы «впускной» распредвал обеспечил более позднее открытие и позднее закрытие клапанов, а «выпускной» разворачивается так — чтобы клапан закрывался намного раньше до подхода поршня в верхнюю мертвую точку.
Получается, что количество отработанной смеси снижается почти до минимума, причем она практически не мешает на такте впуска, это благоприятно сказывается на работе мотора на холостых оборотах, его стабильности и равномерности.
Средние и высокие обороты – здесь задача выдать максимальную мощность, поэтому «поворачивание» происходит таким образом, чтобы задержать открытие выпускных клапанов.
Таким образом, остается давление газов на такте рабочего хода. Впускные в свою очередь открываются после достижение поршня верхней мертвой точки (ВМТ), и закрываются после НМТ.
Таким образом, мы как бы получаем динамический эффект «дозарядки» цилиндров двигателя, что несет за собой увеличение мощности.
Максимальный крутящий момент – как становится понятно, нам нужно как можно больше наполнять цилиндры.
Для этого нужно намного раньше открывать и соответственно намного позже закрывать впускные клапана, сберечь смесь внутри и не допустить ее выхода обратно в впускной коллектор.
«Выпускные» же в свою очередь, закрываются с некоторым опережением до ВМТ, чтобы оставить небольшое давление в цилиндре. Думаю это понятно.
Таким образом, сейчас работает много похожих систем, из них самые распространенные Renault (VCP), BMW (VANOS/Double VANOS), KIA-Hyundai (CVVT), Toyota (VVT-i), Honda (VTC).
НО и эти не идеальные, они могут только смещать фазы в одну или другую сторону, но не могут реально «сузить» или «расширить» их. Поэтому сейчас начинают появляться более совершенные системы.
Honda (VTEC), Toyota (VVTL-i), Mitsubishi (MIVEC), Kia (CVVL)
Чтобы дополнительно регулировать поднятие клапана, были созданы еще более продвинутые системы, но родоначальницей была компания HONDA, со своим мотором VTEC (Variable Valve Timing and Lift Electronic Control). Суть в том, что кроме изменения фаз, эта система может больше поднимать клапана, тем самым улучшая наполнение цилиндров или отвод отработанных газов. У HONDA сейчас используется уже третье поколение таких моторов, которые впитали в себя сразу обе системы VTC (фазовращатели) и VTEC (поднятие клапана), и сейчас она называется – DOHC i-VTEC.
Система еще более сложная, она имеет продвинутые распредвалы в которых есть совмещенные кулачки.
Два обычных по краям, которые нажимают на коромысла в обычном режиме и средний более выдвинутый кулачок (высокопрофильный), который включается и нажимает клапана скажем после 5500 оборотов. Эта конструкция имеется на каждую пару клапанов и коромысел.
Как же работает VTEC? Примерно до 5500 об/мин мотор работает в штатном режиме, используя только систему VTC (то есть крутит фазовращатели).
Средний кулачок как бы не замкнут с двумя другими по краям, он просто вращается в пустую.
И вот при достижении высоких оборотов, ЭБУ дает приказание на включение системы VTEC, начинает закачиваться масло и специальный штифт выталкивается вперед, это позволяет замкнуть все три «кулачка» сразу, начинает работать самый высокий профиль – теперь именно он давит пару клапанов, на которые рассчитана группа. Таким образом, клапан опускается намного больше, что позволяет дополнительно наполнить цилиндры новой рабочей смесью и отвести больший объем «отработки».
Стоит отметить, что VTEC стоит и на впускном и выпускном валах, это дает реальное преимущество и прирост мощности на высоких оборотах. Прирост примерно в 5 – 7%, это очень хороший показатель.
Стоит отметить, хотя ХОНДА была первой, сейчас похожие системы используются на многих автомобилях, например Toyota (VVTL-i), Mitsubishi (MIVEC), Kia (CVVL). Иногда как например в моторах Kia G4NA, используется лифт клапанов только на одном распредвалу (здесь только на впускном).
НО и у этой конструкции есть свои недостатки, и самый главный это ступенчатое включение в работу, то есть едите до 5000 – 5500 и дальше чувствуете (пятой точкой) включение, иногда как толчок, то есть нет плавности, а хотелось бы!
Плавное включение или Fiat (MultiAir), BMW (Valvetronic), Nissan (VVEL), Toyota (Valvematic)
Хотите плавности пожалуйста, и тут первой в разработках была компания (барабанная дробь) – FIAT. Кто бы мог подумать, они первые создали систему MultiAir, она еще более сложная, но более точная.
«Плавная работа» здесь применена на впускных клапанах, причем распредвала здесь вообще нет. Он сохранился только на выпускной части, но он имеет воздействие и на впуск (наверное запутал, но постараюсь объяснить).
Принцип работы. Как я сказал, здесь есть один вал, и он руководит и впускными и выпускными клапанами.
ОДНАКО если на «выпускные» он воздействует механически (то есть банально через кулачки), то вот на впускные воздействие передается через специальную электро-гидравлическую систему.
На валу (для впуска) есть что-то типа «кулачков», которые нажимают не на сами клапана, а на поршни, а те передают приказания через электромагнитный клапан на рабочие гидроцилиндры открывать или закрывать. Таким образом, можно добиться нужного открытия в определенный период времени и оборотов. При малых оборотах, узкие фазы, при высоких – широкие, и клапан выдвигается на нужную высоту ведь здесь все управляется гидравликой или электрическими сигналами.
Это позволяет сделать плавное включение в зависимости от оборотов двигателя. Сейчас такие разработки есть также у многих производителей, таких как — BMW (Valvetronic), Nissan (VVEL), Toyota (Valvematic).
Но и эти системы не идеальны до конца, что опять не так? Собственно здесь опять же есть привод ГРМ (который забирает на себя около 5% мощности), есть распредвал и дроссельная заслонка, это опять забирает много энергии, соответственно крадет КПД, вот бы от них отказаться.
FreeValve
Отказ полностью от валов, дросселя и привода ГРМ (цепь или ремень) выносят многие производители, но первыми сделали это Шведы в своем суперкаре Koenigsegg, который кстати развивает аж 1500 л.с.
Как это устроено? Вместо валов здесь находятся специальные электромагнитные актуаторы, в которых встроены пневматические пружины.
ЭБУ контролирует каждый такой клапан и способна открывать и закрывать его очень быстро (до 100 раз в секунду) и на любое расстояние которое нужно.
Это позволяет регулировать фазы на любое заданное значение! И ЭТО РЕАЛЬНО ОЧЕНЬ КРУТО.
Испытания показали, что такой мотор до 30% мощнее и эффективнее чем аналоги с распределительной системой, а также он экономичен на эти же 30%. Плавность хода здесь на высоте.
Минусом пока является что такой мотор, шумный, такое количество электромагнитных клапанов создает щелканье при открытие, причем оно нарастает при повышении оборотов. Также стоимость агрегата пока очень высока, но если его запустить в серию цена может значительно упасть.
Что же вот мы с вами и рассмотрели основные виды фазовращателей и просто систем газораспределения без них. Кто не особо понял посмотрите видео версию, там я постараюсь рассказать все просто и на пальцах.
НА этом заканчиваю, думаю, моя статья была для вас полезна, подписывайтесь на наш сайт и канал , искренне ваш АВТОБЛОГГЕР.
Источник: http://avto-blogger.ru/dv/fazovrashhatel-v-dvs.html
Система изменения фаз газораспределения
Окт 26 2014
Что такое фазы газораспределения в двигателе внутреннего сгорания? Именно с этого ответа на вопрос мы начнем с вами статью.
Фазами газораспределения принято считать момент с начала открытия и до конца закрытия впускного или выпускного клапана, относительно положения поршня (верхняя или нижняя мертвая точка), выраженного в градусах угла поворота коленчатого вала.
В большинстве двигателей внутреннего сгорания установленных на автомобилях, фазы газораспределения одинаковы на всех режимах работы двигателя, то есть они остаются неизменными, будь это холостой ход или режим полной нагрузки на высокой частоте вращения коленчатого вала.
В результате все это сказывается на малой эффективности работы двигателя и снижению его КПД, так как на разных режимах работы требуется разная величина фаз газораспределения.
Например, для низких оборотов требуются короткие фазы, имеющие минимальную продолжительность, для высоких оборотов наоборот, необходимы широкие фазы, которые будут перекрывать такт впуска и выпуска.
Мы знаем, что работой впускных и выпускных клапанов управляет распределительный вал, точнее его кулачки.
Так вот, чтобы на двигателях с постоянными фазами газораспределения, добиться оптимальной работы, как на низких, так и на высоких оборотах, особое внимание инженеры конструкторы уделяют форме и размерам кулачков распредвала, ведь именно от них зависит продолжительность фазы газораспределения.
В поисках компромиссов чему больше отдать предпочтение высокому крутящему моменту на низких оборотах или повышенной мощности на высоких оборотах, инженеры потихоньку пришли к решению создать систему с изменяемыми фазами газораспределения. В которой для каждого режима работы двигателя фазы газораспределения будут индивидуальны.
Впервые система изменения фаз газораспределения была применена в 1983 на легендарной марке автомобилей Альфа Ромео.
После удачного опыта, применение данной системы, она стало появляться и на других известных марках, таких как Mercedes-Benz, Porsche, BMW, Honda и др.
Основными положительными качества данной системы являлось то, что получилось добиться:
- Заметного улучшения работы двигателя на холостом ходу.
- Снижение расхода топлива.
- Увеличение мощности.
- Оптимального крутящего момента на различных оборотах.
- Естественной рециркуляции отработавших газов, а с ней и уменьшение выбросов оксида азота в атмосферу.
Добиться изменения фаз газораспределения можно несколькими способами, на данный момент их три:
- с помощью поворота распредвала.
- применение кулачков разной формы.
- изменением высоты подъема клапанов.
Система АИФГ поворот распределительного вала
Данный способ изменения фаз нашли применение на следующих марках автомобилей:
- Toyota — VVT-i (Dual VVT-i);
- Volkswagen — VVT;
- Honda — VTC;
- Volvo, Hyundai, Kia — CVVT;
- Renault — VCP;
- BMW VANOS;
- General Motors;
На впускном (аналогично и на выпускном) распределительном валу расположена гидромуфта, которая под контролем блока управления поворачивает его на заданный угол, тем самым, изменяя фазу газораспределения.
Весь механизм установлен на головке блока цилиндров, снизу к нему подходят масляные каналы системы смазки двигателя для управления обоими гидромуфтами.
На корпусе механизма установлены два электрогидравлических распределителя, которые и обеспечивают подвод масла к муфте.
Гидравлическая муфта состоит из ротора, жестко закрепленного на распределительном валу и корпуса муфты в роли, которой выступает шкив газораспределения.
В роторе расположены масляные каналы, по которым масло заполняет камеры образованные между ротором и корпусом.
Заполнение той или иной части камеры приводит к повороту ротору относительно корпуса, что в итоге обеспечивает поворот распределительного вала на необходимый в данный момент угол.
Сама система устроена таким образом, что в блок управления поступают основные сигналы параметров двигателя: частота вращения двигателя, расход воздуха и его температура, температура охлаждающей жидкости, данные с датчиков Холла установленных на механизме газораспределения.
На основании этих данных блок управления посылает сигналы электрогидравлическим распределителям, которые в свою очередь управляют самой гидромуфтой, под действием давления масла в системе смазки автомобиля.
Система АИФГ с разной формой кулачков
Эту технологию себе на вооружения взяли следующие марки: В первую очередь снова выступает Honda со своей известной системой – VTEC;
Toyota — VVTL-i;Mitsubishi — MIVEC;
Audi — Valvelift System;
Данный вид системы изменения фаз газораспределения разберем на примере системы VTEC.
Система устроена следующим образом:
На каждый цилиндр имеется два впускных клапана 1, три коромысла 2 и три кулачка на распределительном валу. Два крайних одного размера 3, а третий по середине большего 5.
А) На малых оборотах под воздействием малых кулачков усилие на впускные клапана передаются через крайние коромысла, обеспечивая их открытие в данном режиме. Среднее коромысла в этом режиме работы двигателя не участвует, что в итоге обеспечивает короткие фазы газораспределения.
В) При переходе двигателя в режим высоких оборотов автоматически срабатывает гидравлический блокирующий механизм 4, который соединяет все коромысла между собой вместе.
С) Теперь на коромысла воздействует только средний, кулачок большего размера, что приводит к удлинению фаз газораспределения.
В другой модификации системы VTEC, в отличие от предыдущей, присутствуют три режима регулировки, на малых, на средних и на высоких оборотах.
В этой системе три кулачка разного размера. На малых оборотах в работе участвует один малый кулачок, открывающий только один впускной клапан.
На средних оборотах два малых кулачка открывающие оба клапана.
На высоких оборотах, так же как и в предыдущем случае, один большой открывающий оба клапана.
На современных двигателях Honda использует результат двух объединенных систем VTEC и VTC, такая система получила название I-VTEC.
Она более сложная, нежели ее предшественники, но в то же время благодаря объединению этих двух систем в единое целое I-VTEC получила возможность расширить параметры регулирования.
Система АИФГ изменением высоты подъема клапанов
Первый успех в применении системы регулировки высоты подъема впускного клапана добилась BMW, представив в 2001 году на Женевском автосалоне своей BMW 316ti Compact с системой Valvetronic.
После успеха BMW в освоение данной системы, добились подобного результата и следующие марки:
Nissan — VEL;Toyota – Valvematic;Fiat – MultiAir;
Peugeot — VTI;
Данную систему можно считать наиболее совершенной, так как при использовании этой системы можно полностью отказаться от дроссельной заслонки, не слишком совершенного узла участвующего в регулировании подачи топливной смеси.
1) Электродвигатель (сервопривод).
2) Червячный вал.
3) Пружина возвратная.
4) Впускной распредвал.
5) Выпускной распредвал.
6) Червячная шестерня.
7) Эксцентриковый вал.
Промежуточный рычаг.
9) Коромысло впускного клапана.
10) Гидрокомпенсатор выпускного клапана.
11) Коромысло выпускного клапана.
12) Выпускной клапан.
13) Гидрокомпенсатор впускного клапана.
14) Впускной клапан.
В системе изменения высоты подъема клапанов помимо классической связки распределительный вал – коромысло – клапан, присутствует еще эксцентриковый вал и промежуточный рычаг.
Так же как и в предыдущих системах всем управляет блок управления, получающий сигналы с датчиков установленных на двигатели.
Сопоставляя все поступившие сигналы, он посылает сигнал управления сервоприводу 1, который через червячный вал 2, вращает эксцентриковый вал 9.
Эксцентриковый вал 9 в свою очередь изменяет положение промежуточного рычага 10, а он через коромысло 11 высоту подъема впускного клапана 16 регулируя фазы газораспределения. Таким образом, данная система может очень точно подобрать необходимую фазу газораспределения на любых оборотах.
Источник: http://webavtocar.ru/sistema-izmeneniya-faz-gazoraspredeleniya.html
Регулирование фаз газораспределения ДВС
В теории для наполнения цилиндра горючей смесью и выпуска отработанных газов клапаны должны открываться точно в верхней или нижней мертвых точках. На практике же это приходится делать заблаговременно.
Причем на разных оборотах двигателя время открытого состояния должно быть разным.
Но время и высота подъема клапанов раз и навсегда заданы формой кулачков распредвала, представляя собой компромисс между высоким крутящим моментом на низких оборотах и высокой мощностью на высоких оборотах.
Чтобы оптимизировать наполнение и очистку цилиндров двигателя в разных режимах работы были созданы системы изменения фаз газораспределения.
статьи
- 1 Как двигают фазы
- 2 Системы регулирования фаз
Как двигают фазы
У разных производителей существуют различные конструкции таких систем. Одни изменяют время подъема клапанов, другие – высоту подъема, а третьи – и то, и другое.
Системы изменения фаз могут устанавливаться только для впускных клапанов или и для впускных, и для выпускных.
В настоящее время используется три способа изменения фаз газораспределения.
- Первый способ — поворот распредвала по ходу вращения с ростом оборотов двигателя. Таким образом, обеспечивается более раннее открытие клапанов. Основная деталь таких систем – фазовращатель (другое название – гидроуправляемая муфта). Он представляет собой ротор, смонтированный в шкиве распредвала, между которыми есть полости. Эти полости по сигналу контроллера двигателя через электромагнитный клапан заполняются маслом, что приводит к повороту распредвала. Угол поворота зависит от того, какая именно полость заполнена. Фазовращатель в большинстве случаев устанавливается только на впускной распредвал, на некоторых системах – и на выпускной. Описанный способ используется в системах VANOS и Double VANOS от BMW, VVT-i и Dual VVT-i(Variable Valve Timing with intelligence) от Toyota, VVT(Variable Valve Timing) от Volkswagen, VTC(Variable Timing Control) от Honda, CVVT(Continuous Variable Valve Timing) от Hyundai, Kia, Volvo, General Motors, VCP(Variable Cam Phases) от Renault.
- Второй способ – применение кулачков разного профиля на разных режимах работы. На малых оборотах используются кулачки, обеспечивающие «узкие» фазы, то есть малые высоту подъема и время открытия клапанов. С ростом оборотов по команде блока управления происходит переключение на «широкофазные» кулачки. Таким образом, фазы меняются ступенчато, а не плавно, как в предыдущей системе. Зато, кроме фаз, регулируется и высота подъема клапана. Разнопрофильные кулачки используют в своих системах: VTEC (Variable Valve Timing and Lift Electronic Control) от Honda, VVTL-i (Variable Valve Timing and Lift with intelligence) от Toyota, MIVEC (Mitsubishi Innovative Valve timing Electronic Control) от Mitsubishi.
- Третья, самая совершенная группа систем, плавно регулирует высоту подъема клапанов. Главное достоинство таких систем в том, что они позволяют отказаться от дроссельной заслонки на впуске. Тем самым существенно снижаются насосные потери и расход топлива. Впервые такая система под названием Valvetroniс была применена BMW. В ней между распредвалом и клапаном расположен дополнительный рычаг, один конец которого давит на коромысло клапана, а второй соединен с эксцентриковым валом. Проворачивая этот вал с помощью электромотора, система управления тем самым меняет наклон рычага и его плечо. Увеличение плеча приводит к увеличению подъема клапана и количества воздуха, попадающего в цилиндры. Высота подъема регулируется в пределах от 0,5 до 12 мм.
Вслед за BMW аналогичные системы создали Valvematic от Toyota, VEL (Variable Valve Event and Lift System) от Nissan, MultiAir от Fiat, VTI (Variable Valve and Timing Injection) от Peugeot.
В системе MultiAir используется один распредвал, который приводит и впускные, и выпускные клапана.
Но если выпускные клапана механически управляются кулачками, то на впускные воздействие от кулачков передается через специальную электрогидравлическую систему. Именно в ней и состоит новизна.
Впускные кулачки нажимают на поршни, а те через электромагнитный клапан передают усилие на рабочие гидроцилиндры, которые уже воздействуют на впускные клапана. Главный узел – именно клапан, регулирующий давление в системе.
Он имеет только два положения: открыт-закрыт. Если он открыт, давление в системе отсутствует, и усилие на клапан не передается.
Поэтому, управляя моментом и длительностью открытия электромагнитного клапана за то время, пока кулачок воздействует на поршенек, можно добиться любого алгоритма открытия впускных клапанов. А значит, ширину фаз можно плавно регулировать от 0 до 100%. Максимальная ширина фазы определяется профилем впускного кулачка распредвала.
А какое отношение все вышеописанное имеет к экологии? Системы изменения фаз газораспределения, оптимизируя процесс сгорания топлива, тем самым снижают его расход, а, значит и количество вредных выбросов.
Системы регулирования фаз
Система регулирования фаз VTEC от Honda.Система регулирования фаз MultiAir от FIATСистема регулирования фаз VVT от Volkswagen.
Источник: http://avtonov.info/regulirovanie-faz-gazoraspredelenija-dvs
Фазы и механизм газораспределения — как это работает и на что влияет
Термин «фаза» означает часть, этап или ступень какого-то процесса.
Поэтому впускная и выпускная фазы газораспределения – часть полного цикла работы двигателя внутреннего сгорания.
Прочитав статью, вы узнаете, что происходит во время фаз, каким образом двигатель регулирует их и на что влияют фазы газораспределения.
Как работает двигатель внутреннего сгорания
Воспламенение топливовоздушной смеси в цилиндре двигателя приводит к выделению выхлопных газов и увеличению температуры.
Во время такта сжатия поршень движется к верхней мертвой точке (ВМТ) сжимая топливовоздушную смесь или воздух (дизельный двигатель).
Воспламенение происходит незадолго до ВМТ. В бензиновом двигателе топливовоздушную смесь воспламеняет искра свечи зажигания. В дизельном моторе в раскаленный от сжатия воздух впрыскивают распыленное топливо.
Когда поршень приближается к нижней мертвой точке (НМТ), наступает выпускная фаза газораспределения. Выпускной клапан открывается и поднимающийся к ВМТ поршень выдавливает из цилиндра продукты горения топливовоздушной смеси.
Когда поршень подходит к ВМТ заканчивается фаза выпуска и начинается фаза впуска. Поршень движется в ВМТ, в цилиндре возникает разряжение, благодаря которому воздух засасывает внутрь камеры сгорания.
После достижения ВМТ фаза впуска завершается и начинается такт сжатия.
Устройство механизма газораспределения
Газораспределительный механизм (ГРМ) состоит из:
- одного или двух кулачковых распределительных валов, на каждый из которых установлена своя шестерня;
- шестерни коленчатого вала;
- цепного или ременного привода.
Число зубьев шестерни распределительного вала всегда в 2 раза больше, чем у шестерни коленчатого вала.
Благодаря этому за два оборота коленчатого вала происходит лишь один оборот распределительного вала.
Это позволяет открывать и закрывать клапаны головки блока цилиндров (ГБЦ) в зависимости от такта двигателя.
Фазы газораспределения зависят от расположения кулачков распределительного вала. Поэтому на одновальных двигателях возможна только одновременная регулировка фаз впуска и выпуска.
На двухвальных двигателях возможна раздельная регулировка фазы впуска и фазы выпуска. Это позволяет оптимизировать работу двигателя под различные режимы.
Когда кулачок распределительного вала доходит до клапана, то начинает давить на него до тех пор, пока клапан полностью не откроется. Затем кулачок проходит дальше и пружина начинает выдавливать клапан, стремясь закрыть его.
Как только давление со стороны распределительного вала исчезает, пружина полностью закрывает клапан.
Угол поворота распределительного вала, в течение которого впускные или выпускные клапаны одного цилиндра открыты и называется фазой газораспределения.
На что влияют фазы ГРМ
В двигателях современных бюджетных автомобилей не предусмотрена автоматическая регулировка фаз газораспределения, поэтому они настроены на средний режим работы. Форма кулачков распределительных валов таких двигателей рассчитана на максимальное наполнение и освобождение цилиндров при скорости вращения, близкой к максимальному крутящему моменту. Обычно он расположен между 2/3 и 3/4 от максимальных оборотов. Поэтому такой двигатель «плохо тянет» на оборотах ниже половины от максимальных.
Почему так происходит? Чем выше обороты двигателя, тем быстрей движутся поршни.
В результате давление внутри цилиндра во время фазы выпуска возрастает, но пропускная способность выпускного клапана не меняется.
Во время фазы впуска поршень движется быстрей, чем на холостых оборотах, но пропускная способность клапана не меняется.
Поэтому чем выше обороты двигателя, тем хуже наполнение цилиндров. Поэтому нередко фазы выпуска и выпуска пересекаются. В то время когда выпускной клапан закрывается, но еще открыт, начинает открываться впускной клапан.
На холостых и низких оборотах часть топлива, которая поступает в двигатель, уходит в выхлопную трубу. Это снижает мощность и экономичность двигателя.
По мере роста оборотов влияние этого эффекта слабеет. Поэтому чем выше обороты двигателя, тем длинней должны быть фазы газораспределения.
Это позволит избежать снижения мощности мотора.
Если сдвинуть фазы газораспределения от оптимальной точки, то произойдет резкое падение мощности мотора.
Ведь цилиндры будут или не до конца освобождаться от выхлопных газов или не до конца наполняться топливовоздушной смесью.
Однако оптимальная точка начала фазы и ее продолжительность зависят от нагрузки на мотор и оборотов двигателя.
Поэтому тюнинговые мастерские и умелые автомобилисты устанавливают вместо штатной шестерни распределительного вала разрезную шестерню, с помощью которой можно сдвигать фазу на угол до 10 градусов.
Также используют тюнинговые распределительные валы, рассчитанные на различные режимы и нагрузки. Те, кто предпочитает ездить на максимальной скорости, устанавливают валы с максимальными фазами впуска и выпуска. Те же, кто ездит на средних оборотах двигателя, избегая резких стартов и больших скоростей, ставят валы с чуть уменьшенными фазами.
Регулятор фаз газораспределения
Существует большое количество моделей фазорегуляторов, которые работают по различным алгоритмам. Однако, общий принцип неизменен.
Когда двигатель работает на низких оборотах, фазорегулятор сокращает впускную и выпускную фазы. Это позволяет сократить расход топлива.
Когда двигатель начинает работать на высоких оборотах или под нагрузкой, регулятор увеличивает продолжительность фаз, а нередко и точку их начала.
Это позволяет не только увеличить мощность и крутящий момент, но и снижает расход топлива. Наиболее популярны модели фазорегуляторов, которые работают на основе центробежного принципа.
Чем выше обороты двигателя, тем сильней они натягивают цепь или ремень привода ГРМ, тем самым сдвигая и фазы газораспределения.
Благодаря тому, что эти устройства регулируют натяжение ремня или цепи со стороны обоих распределительных валов, они эффективно сдвигают обе фазы.
Такие фазорегуляторы не требуют настройки, однако после пробега в 40-70 тысяч километров необходимо менять уплотнительные кольца гидроцилиндров.
Более сложные регуляторы представляют собой систему из датчиков, контроллера двигателя и исполнительных устройств. Однако, принцип их работы точно такой же, как у центробежных.
Исполнительное устройство увеличивает или ослабляет натяжение цепи со стороны впускного и выпускного валов. Благодаря этому каждая фаза регулируется отдельно.
Такие системы требуют настройки и регулярной проверки. Благодаря тому, что исполнительные механизмы работают от электричества, нет необходимости в регулярной замене уплотнительных колец.
Существуют также системы, в которых электронное управление совмещено с гидравлическим приводом.
В таких системах регулировка происходит не за счет натяжения цепи, а с помощью увеличения давления внутри шестерни распределительного вала.
Чем выше давление, тем дальше гидропривод проворачивает распределительный вал относительно положения шестеренки.
Как установить фазы газораспределения
На большинстве современных автомобилей, оснащенных механическим ГРМ, фазы газораспределения выставляют одинаково. По ВМТ первого цилиндра.
Для этого на корпусе блока цилиндров и ГБЦ, а также на шестернях распределительного и коленчатого валов нанесены специальные метки. В первую очередь совмещают метки коленчатого вала.
Затем совмещают метки распределительного (распределительных) валов. После этого надевают и натягивают цепь или ремень, затем проверяют метки.
Если метки на месте, коленчатый вал прокручивают 2 или 4 раза и снова проверяют метки.
Если метки шестерней распределительного и коленчатого валов совпадают с метками на блоке цилиндров и ГБЦ, то фазы выставлены правильно. Если отличаются, необходимо снять цепь или ремень и повторить все операции.
Источник: http://VipWash.ru/vyhlopnaya-sistema/fazy-i-mehanizm-gazoraspredeleniya
Система изменения фаз газораспределения, принцип работы VVT
Разрезная шестерня, позволяющая регулировать фазы открытия/закрытия клапанов, ранее считалась принадлежностью лишь спортивных автомобилей.
Во многих современных двигателях система изменения фаз газораспределения используется штатно и работает не только на благо повышения мощности, но и для снижения расхода топлива и выбросов вредных веществ в окружающую среду. Рассмотрим, как работает Variable Valve Timing (международное название систем такого типа), а также некоторые особенности устройства VVT на автомобилях BMW, Toyota, Honda.
Фиксированные фазы
Фазами газораспределения принято называть моменты открытия и закрытия впускных и выпускных клапанов, выраженные в градусах поворота коленчатого вала относительно НМТ и ВМТ. В графическом выражении период открытия и закрытия приято показывать диаграммой.
Если мы говорим о фазах, то изменению могут поддаваться:
- момент начала открытия впускных и выпускных клапанов;
- продолжительность нахождения в открытом состоянии;
- высота подъема (величина, на которую опускается клапан).
Преобладающее большинство двигателей имеют фиксированные фазы газораспределения. Это значит, что описанные выше параметры определяются лишь формой кулачка распределительного вала.
Недостаток такого конструктивного решения в том, что рассчитанная конструкторами форма кулачков для работы двигателя будет оптимальной только в узком диапазоне оборотов.
Гражданские двигатели проектируются таким образом, чтобы фазы газораспределения соответствовали обычным условиям эксплуатации автомобиля.
Ведь если сделать двигатель, который очень хорошо будет ехать «с низов», то на оборотах выше средних крутящий момент, как и пиковая мощность, будет слишком низким. Именно эту проблему решает система изменения фаз газораспределения.
Принцип действия VVT
Суть работы системы VVT в том, чтобы в реальном времени, ориентируясь на режим работы двигателя, корректировать фазы открытия клапанов. В зависимости от конструктивных особенностей каждой из систем, реализовывается это несколькими путями:
- поворотом распределительного вала относительно шестерни распредвала;
- включением в работу на определенных оборотах кулачков, форма которых подходит для мощностных режимов;
- изменением высоты подъема клапанов.
Наибольшее распространение получили системы, в которых регулировка фаз осуществляется изменением углового положения распределительного вала относительно шестерни. Несмотря на то что в работу разных систем положен схожий принцип, многие автоконцерны используются индивидуальные обозначения.
- Рено – Variable Cam Phases (VCP).
- БМВ – VANOS. Как и у большинства автопроизводителей, изначально подобной системой укомплектовывался только распределительный вал впускных клапанов. Система, в которой гидромуфты изменения фаз газораспределительного механизма устанавливается и на выпускной распредвал, называется Double VANOS.
- Тойота — Variable Valve Timing with intelligence (VVT-i). Как в случае с БМВ, наличие системы на впускном и выпускном распредвалах именуется Dual VVT.
- Хонда — Variable Timing Control (VTC).
- Фольксваген в данном случае поступили более консервативно и выбрали международное название — Variable Valve Timing (VVT).
- Хюндай, Киа, Вольво, GM — Continuous Variable Valve Timing (CVVT).
Как фазы влияют на работу двигателя
Характер поведения газов внутри ДВС изменяется в зависимости от режима работы мотора. К примеру, на холостых оборотах скорость движения поршней значительно ниже, чем в режиме работы на максимальных оборотах.
Соответственно, колебания газовой среды во впускном и выпускном коллекторах значительно зависят от режимной точки работы двигателя.
Упомянутые колебания способны как приносить пользу, создавая резонансный наддув (подробней об акустическом наддуве в статье о системе изменения геометрии впускного коллектора), так и вред – паразитные колебания, застои.
Именно поэтому скорость и эффективность наполнения цилиндров в разных режимных точках работы двигателя значительно отличаются.
На низких оборотах максимальное наполнение цилиндров будет обеспечивать позднее открытие выпускного клапана и раннее закрытие впускного.
В таком случае перекрытие клапанов (положение, в котором выпускные и впускные клапаны одновременно открыты) минимально, поэтому исключается возможность выталкивания оставшихся в цилиндре выхлопных газов обратно во впуск. Именно из-за широкофазных («верховых») распределительных валов на форсированных моторах часто приходится устанавливать повышенные обороты холостого хода.
На высоких оборотах для получения максимальной отдачи от двигателя фазы должны быть максимально широкими, так как за единицу времени поршни будут прокачивать намного больше воздуха. При этом перекрытие клапанов будет положительно влиять на продувку цилиндров (выход оставшихся выхлопных газов) и последующую наполняемость.
Именно поэтому установка системы, позволяющей подстроить фазы газораспределения, а в некоторых системах и высоту подъема клапанов, под режим работы двигателя, делает двигатель эластичней, мощней, экономичней и в то же время дружелюбней к окружающей среде.
Устройство, принцип работы VVT
За угловое смещение распределительного вала отвечает фазовращатель, представляющий собой гидромуфту, работой которой управляет ЭБУ двигателя.
Конструктивно фазовращатель состоит из ротора, который соединен с распредвалом, и корпуса, наружная часть которого является шестерней распределительно вала.
Между корпусом гидроуправляемой муфты и ротором находятся полости, заполнение которых маслом приводит к перемещению ротора, а, следовательно, и смещению распредвала относительно шестерни.
В полости масло подается по специальным каналам. Регулировка количества поступающего через каналы масла осуществляется электрогидравлическим распределителем.
Распределитель представляет собой обычный электромагнитный клапан, который управляется ЭБУ посредством ШИМ-сигнала. Именно ШИМ-сигнал делает возможным плавное изменение фаз газораспределения.
Система управления, в образе ЭБУ двигателя, использует сигналы следующих датчиков:
- ДПКВ (рассчитывается частота вращения коленчатого вала);
- ДПРВ;
- ДПДЗ;
- ДМРВ;
- ДТОЖ.
Системы с разной формой кулачков
Ввиду более сложной конструкции, система изменения фаз газораспределения посредством воздействия на коромысла клапанов кулачков разной формы получила меньшее распространение. Как и в случае с Variable Valve Timing, автоконцерны используют разные обозначения для обозначения схожих по принципу работы систем.
- Хонда — Variable Valve Timing and Lift Electronic Control (VTEC). Если на двигателе одновременно используется и VTEC, и VVT, то такая система носит аббревиатуру i-VTEC.
- БМВ – Valvelift System.
- Ауди — Valvelift System.
- Тойота — Variable Valve Timing and Lift with intelligence от Toyota (VVTL-i).
- Митсубиши — Mitsubishi Innovative Valve timing Electronic Control (MIVEC).
Принцип работы
Система VTEC от Honda является, пожалуй, одной из самых известных, но и остальные системы работают по схожему типу.
Как вы можете увидеть из схемы, в режиме низких оборотов усилие на клапаны через коромысла передается набеганием двух крайних кулачков. При этом среднее коромысло двигается «вхолостую».
При переходе в режим высоких оборотов давлением масла выдвигается запорный шток (блокирующий механизм), который превращает 3 коромысла в единый механизм.
Увеличение хода клапанов достигается за счет того, что среднему коромыслу соответствует кулачок распредвала с наибольшим профилем.
Разновидность системы VTEC является конструкция, в которой режимам: низких, средних и высоких оборотов соответствуют разные коромысла и кулачки.
На низких оборотах кулачком меньшей формы открывается только один клапан, в режиме средних оборотов два меньших по форме кулачка открывают 2 клапаны, а на больших оборотах наибольший кулачок открывает оба клапаны.
Крайний виток развития
Ступенчатое изменение продолжительности открытия и высоты подъема клапанов позволяет не только изменять фазы газораспределения, но и практически полностью снять с дроссельной заслонки функцию регулирования нагрузки на двигатель. Речь в первую очередь о системе Valvetronic от BMW. Именно специалисты БМВ впервые добились подобных результатов. Сейчас схожими разработками обладают: Toyota (Valvematic), Nissan (VVEL), Fiat (MultiAir), Peugeot (VTI).
Открытая на небольшой угол дроссельная заслонка создает значительное противодействие движению воздушных потоков.
В итоге часть полученной от сгорания топливовоздушной смеси энергии уходит на преодоление насосных потерь, что негативно сказывается на мощности и экономически автомобиля.
В системе Valvetronic количество поступающего в цилиндры воздуха регулируется степенью подъема и продолжительностью открытия клапанов. Реализовать это получилось при помощи внедрения в конструкцию эксцентрикового вала и промежуточного рычага.
Рычаг связан червячной передачей с сервоприводом, управляет которым ЭБУ. Изменения положения промежуточного рычага смещает воздействие коромысла в сторону большего или меньшего открытия клапанов. Более подробно принцип работы показан на видео.
Источник: http://mttunost.ru/sistema-izmeneniia-faz-gazoraspredeleniia-princip-raboty-vvt/