Устройство и принцип работы гидроцилиндра

Содержание

Принцип работы гидравлического цилиндра

Устройство и принцип работы гидроцилиндра

Гидравлический цилиндр – это объёмный двигатель возвратно-поступательного или возвратно-поворотного движения. Гидроцилиндры широко применяют во всех отраслях техники.

Например, в строительно-дорожных, землеройных, подъёмно-транспортных машинах, в авиации и космонавтике, в технологическом оборудовании — металлорежущих станках, кузнечно-прессовых машинах и т.п.

В простейшем случае основой конструкции гидроцилиндра является гильза, представляющая собой трубу с тщательно обработанной внутренней поверхностью.

Внутри гильзы перемещается поршень, имеющий резиновые манжетные уплотнения, которые предотвращают перетекание рабочей жидкости из полостей цилиндра, разделенных поршнем.

При подаче под давлением рабочей жидкости (специальные минеральные масла) в полость цилиндра поршень начинает перемещаться под действием давления жидкости.

Усилие от поршня передает шток – стержень, имеющий полированную поверхность. Для его направления служит грундбукса. С двух сторон гильзы укреплены крышки с отверстиями для подвода и отвода рабочей жидкости.

Уплотнение между штоком и крышкой состоит из двух манжет, одна из которых предотвращает утечку жидкости из цилиндра, а другая служит грязесъемником.

На резьбу штока крепится проушина или деталь, соединяющая шток с подвижным механизмом.

Проушина служит для подвижного закрепления корпуса гидроцилиндра.

Управление работой гидроцилиндра осуществляется с помощью гидрораспределителя или с помощью средств регулирования гидропривода.

Гидроцилиндры работают при высоких давлениях (до 32 Мпа), что налагает целый ряд требований к прочности и надежности всей конструкции системы (механизм, цилиндр, управление).

Для того, чтобы вам было легче найти и купить гидроцилиндр, который будет устраивать вас по всем параметрам, рассмотрим их основные виды подробнее.

Гидроцилиндры одностороннего действия

Выдвижение штока осуществляется за счёт создания давления рабочей жидкости в поршневой полости, а возврат в исходное положение — от усилия пружины.

Усилие, создаваемое гидроцилиндрами данного типа, при прочих равных условиях меньше усилия, создаваемого гидроцилиндрами двустороннего действия, за счёт того, что при прямом ходе штока необходимо преодолевать силу упругости пружины.

Пружина выполняет здесь роль возвратного элемента.

В тех случаях, когда возврат производится за счет действия приводимого механизма, другого гидроцилиндра или силы тяжести поднятого груза, гидроцилиндр может не иметь возвратной пружины ввиду отсутствия необходимости. Такой принцип действия применяется в домкратах.

Гидроцилиндры двустороннего действия

Как при прямом, так и при обратном ходе поршня усилие на штоке гидроцилиндра создаётся за счёт создания давления рабочей жидкости соответственно в поршневой и штоковой полости цилиндра. Следует иметь в виду, что при прямом ходе поршня усилие на штоке несколько больше, а скорость движения штока меньше, чем при обратном ходе, за счёт разницы в площадях, к которым приложена сила давления рабочей жидкости (эффективной площади поперечного сечения). Такие гидроцилиндры осуществляют, например, подъём-опускание отвала многих бульдозеров.

Телескопические гидроцилиндры

Называются так благодаря конструктивному сходству с телескопом или подзорной трубой.

Такие гидроцилиндры применяются в том случае, если при небольших размерах самого гидроцилиндра в исходном, сложенном состоянии, необходимо обеспечить большой ход штока.

Конструктивно представляют собой несколько цилиндров, вставленных друг в друга таким образом, что корпус одного цилиндра является штоком другого.

Такие гидроцилиндры имеют исполнение как для одностороннего, так и для двустороннего действия. Они осуществляют, например, подъём-опускание кузовов во многих самосвалах.

Дифференциальные гидроцилиндры

«Обычное» подключение поршневых гидроцилиндров двустороннего действия предусматривает поочередное подключение полостей гидроцилиндра к нагнетательной и сливной магистралям через распределитель, что обеспечивает движение поршня за счет разности давлений. Соотношение скоростей движения, а также усилий при прямом и обратном ходе, различны и пропорциональны соотношению площадей поршня. Между скоростью и усилием устанавливается зависимость: выше скорость — меньше усилие, и наоборот.

При рабочем ходе (выдвижении штока) жидкость от насоса подается в поршневую полость, вытесняемая же жидкость из штоковой полости, за счет кольцевого подключения (распределитель 3/2), направляется не в гидробак, а подается также в поршневую полость. В результате выдвижение штока происходит намного быстрее, чем в обычной схеме подключения (распределитель 4/2 или 4/3). Обратный ход (втягивание штока) происходит при подаче жидкости только в штоковую полость, поршневая соединена с гидробаком.

При использовании гидроцилиндра с соотношением площадей поршня 2:1 (в некоторых источниках именно такие гидроцилиндры называются дифференциальными) такая схема позволяет получить равные скорости и равные усилия прямого и обратного ходов, что для гидроцилиндров с односторонним штоком без регулирования или дополнительных элементов получить невозможно.

Механизмы с гибкими разделителями

К механизмам с гибкими разделителями относятся мембраны, мембранные гидроцилиндры и сильфоны.

Мембраны применяют в основном при небольших перемещениях и небольших давлениях (до 1 МПа).

Мембранный исполнительный механизм представляет собой защемленное по периферии корпуса эластичное кольцо.

При увеличении давления в подводящей камере эластичное кольцо прижимается к верхней части корпуса, и шток, связанный с эластичным кольцом, выдвигается.

Обратный ход штока обеспечивает пружина. Сильфоны предназначены для работы при небольших давлениях (до 3 МПа).

Их изготавливают из металлов и неметаллических материалов (резины или пластиков).

Металлические сильфоны бывают одно- и многослойные (до пяти слоев).

Применение сильфонов оправдано в условиях высоких и низких температур, значение которых лимитируется материалом, из которого изготовлен сильфон.

Сильфоны могут быть цельные или сварные. Цельные изготавливают развальцовкой тонкостенной бесшовной трубы.

На сегодняшний день самыми распространенными гидроцилиндрами являются поршневые гидроцилиндры двустороннего действия.

Чтобы вам легче было подобрать гидроцилиндр, нужно знать ряд его параметров. Сначала нужно определить диаметр гильзы (наружный и внутренний в мм).

Затем — диаметр штока гидроцилиндра.

Нужно определить диаметр проушин или вилок для поршневого гидроцилиндра, диаметр шаров, цапф и бугелей для телескопического гидроцилиндра.

Определить расстояние по центрам проушин (осям) гидроцилиндра в сложенном состоянии в мм, расстояние по центрам проушин (осям) гидроцилиндра в разложенном состоянии (выдвинутом штоке или штоках в мм). По разности двух длин можно определить ход штока гидроцилиндра.

Знание этих параметров существенно облегчит вам задачу по поиску необходимого гидроцилиндра. Если нет стандартного гидроцилиндра с требуемыми параметрами, необходимо заказать изготовление цилиндра по вашим требованиям.

Наши инженеры проконсультируют вас по всем вопросам выбора, изготовления, установки и ремонта гидроцилиндров для вашего оборудования.

Источник: http://www.gidrolast.ru/gidrotsilindry-po-primeneniyu/printsip-raboty-gidravlicheskogo-tsilindra/

Гидроцилиндры с торможением

Подвижные узлы тяжеловесных механизмов, работающие на предельных скоростях, обладают огромной инерцией, энергию которой приходится гасить на последнем отрезке хода.

В противном случае высокая нагрузка может разбалтывать крепление узла и само основание, а при её критических значениях подвижная часть может просто вылететь из пазов.

Поломка серьёзная и опасная.

Гашение импульса в конце траектории осуществляется путем принудительного торможения, режим которого заложен в принципиальной схеме гидродвигателя системы. При этом важно сохранить плавность хода, равномерное снижение скорости и быстрое восстановление исходного состояния.

Каким образом осуществляется изменение скорости хода:

  • Можно менять расход масла в поршневой полости. Для этого устанавливается механический регулятор, контролирующий его поток в рабочей магистрали.
  • Движение поршневой пары можно замедлять посредством специального демпферного узла, включенного в конструкцию гидроцилиндра. В этом случае процессом управляет гидравлическое воздействие.

1. Конструктивные способы достижения тормозного эффекта

Смотри рис. 1:

Способ 1. В крышку (3) гидроцилиндра встраивается дроссель.

Способ 2. Плавно меняется зазор в кольце крепления конической головки штока к крышке гидроцилиндра.

Смотри рис. 2:

Способ 3. Используется плунжерное торможение или торможение дросселирующими отверстиями в крышке.

Смотри рис. 3:

Способ 4. Поочередно перекрываются радиальные дроссельные канавки в головке штока.

Способ 5. Постепенно перекрываются продольные дросселирующие канавки в головке штока.

Смотри рис.4:

Способ 6. Используется двойной поршень.

1. Дроссельное торможение (см. рис. 1)

Наиболее распространенный вариант конструкции, в которой демпфер встраивается в крышку (3) гидроцилиндра.

Плавным перекрытием основной сливной магистрали (каналы 6-8), с последующим отводом масла из рабочей поршневой полости через дроссель (7), достигается сброс скорости движения поршня.

Поршень (1), жестко соединенный со штоком (2), быстро возвращается в начальное положение при подаче в его полость под давлением рабочей жидкости через обратный клапан.

1.2. Плунжерное торможение (см. рис. 2)

Плунжер (5) с толкателем поджат пружиной (7) к упорной шайбе (8). Толкатель (6) ровно наполовину хода поршня (1) выступает за левую торцевую сторону крышки (4).

Читайте также  Принцип работы вилочного погрузчика

В ней предусмотрен канал (9) для подвода масла в резервуар поршня через специальное отверстие и промежуточную камеру (11).

В конце траектории шток (2) своим выступом (3) упирается в плунжерный толкатель, двигает его вправо под пружинным усилием, частично уменьшая диаметральное сечение камеры, следовательно, и рабочий поток масляной жидкости на сливе в канавку (10).

1.3. Торможение в гидросистеме с дополнительным поршнем (см. рис. 4)

Конструкция штока (5) такова, что в ней предусмотрены два бурта, создающие эффект торможения.

Сформированный подобным образом дополнительный поршень может перемещаться вдоль оси в отверстии основного поршня (4).

В полости гильзы (1) имеются крышки и втулки (6), ограничивающие это движение.

Размер втулок выбирается в соответствии с длиной тормозного участка.

Двигаясь вправо одновременно со штоком, поршень (4) останавливается, упершись во втулку (6), но шток продолжает двигаться, пока не упрется буртом (5) в левый край поршня (4).

Рабочая площадь для потока масла при этом значительно сокращается, в том числе, уменьшается и сила, толкающая шток.

Следовательно, поршневая пара постепенно сбрасывает скорость и останавливается. К сожалению, простая конструкция не позволяет управлять интенсивностью торможения.

2. Конструкции гидроцилиндров. Описание принципа работы их тормозных схем

Ниже будут рассмотрены наиболее часто встречающиеся и отлично показавшие себя на практике разработки, с помощью которых приходит в движение мощная техника в самых разных отраслях народного хозяйства.

2. 1. Типовая конструкция с функцией торможения

Смотри рис.5:

Обычно гидроцилиндр, который выбирают для тяжелогруженных механизмов, имеет следующие базовые компоненты: 

  • гильзовый корпус (1);
  • крышка (2);
  • шток (6) + поршень (5) – неизменная рабочая пара.

Режим торможения при движении обеспечен дополнительной конической втулкой (4), расположенной на штоке. Головка штока тоже имеет форму конуса.

При перемещении поршня влево втулка своей конической частью попадает в ответное отверстие на крышке, создавая помеху на пути вытекания масла.

 

При приближении поршня к крайнему правому положению создаваемый втулкой зазор становится минимальным, и часть масла под давлением начинает вытекать из полости штока по каналам, попадая в дроссельный узел. Так гасится значительная часть инерции подвижной массы. Разумеется, скорость падает и поршень тормозится.

На правом ходу коническая часть штока попадает в ответное отверстие на крышке.

Для начального разгона поршневой пары на крышке и фланце имеется система клапанов, установленная на пути движения масла через подающее отверстие в рабочую зону цилиндра.

2.2. Система торможения посредством изменения сопротивления в магистрали

Смотри рис.6:

При такой схеме тормозное устройство встраивается в крышку (1), где в расточке (2) помещается плунжер (3) со ступенчатым каналом со стороны левого торца(13), опирающийся на пружину (14).

С той же стороны на внешней поверхности плунжера располагаются радиальная проточка (17) и канавка (5), а в торцевом канале (4) имеется обратный клапан (15).

Также на другом торце (8) плунжера существует полость (19), которая через отверстие в плунжере и расточку в крышке соединяется с гидроканалом (12). 

При правом ходе поршня (11) жидкость из камеры (10), между крышкой, поршнем и гильзой (20), поступает в полости (18) и (19) через торцевой канал (9).

Оттуда она через отверстие (7) в стенке (6) плунжера и расточку (16) в гидроканале идет на слив.

Упираясь в плунжер, поршень двигает его вправо, смещая отверстие (7) за пределы расточки, и вместе с этим сжимает пружину.

Вследствие этого слив масла идет только через канавку (5). При этом, за счет изменения сечения канавки, осуществляется постепенное торможение поршня. 

В конце хода расточка гидроканала совпадает с проточкой (17), обеспечивая подачу давления через обратный клапан в поршневую камеру. Так начинается левое движение поршня.

Под действием пружины плунжер приходит в начальное положение, разъединяя проточку с гидроканалом.

Теперь давление жидкости подается через отверстие (7) в правую часть крышки и оттуда по каналу (9) в рабочую камеру поршня, обеспечивая необходимую скорость его перемещения влево.

2.3. Гидроцилиндр со встроенным тормозом без плунжерной пары

Смотри рис.7

Данная схема упрощена за счет исключения плунжера. Здесь на гильзу (1) шпильками крепится крышка (2).

Она снабжена специальным выступом (9), полость (10) которого через отверстие соединена с гидроканалом (14), а через штуцер с гидромагистралью.

С противоположной стороны гидроканала контргайкой (17) крепится дроссель(12). Он через проточку соединен с поршневой камерой (15).

В полости поршня (5) установлен стакан (6) с тарельчатым клапаном, застопоренным кольцом (16). Стакан опирается на пружину и закрепляется стопором (8).

Хотя регулировки скорости торможения ограниченны дросселем, а тормозной путь определяется конструктивной комбинацией соответствующих выступов на крышке, поршне и его стакане, работает эта система весьма надежно за счет своей простоты. 

На рабочем ходе масло из поршневой камеры через отверстие (14) в полости (10) выступа крышки легко поступает в гидроканал.

При дальнейшем движении поршня выступ крышки перекрывается тарельчатым клапаном (6), и для рабочей жидкости остается только один путь – через проточку (11) с дросселем.

Это искусственное препятствие вызывает повышение сопротивления для перетока масла и приводит к торможению поршня.

При подаче жидкости из магистрали, ее давление отжимает пружину (7) и освобождает тарельчатый клапан. Доступ в поршневую камеру открывается и начинается цикл обратного хода. 

2.4. Тормоз для тяжелых нагрузок с двойным ходом

Смотри рис.8:

Когда нужно осуществить торможение штока и на прямом, и на обратном ходе, можно поступить следующим образом. Гильзу (1) снабжают с двух сторон крышками (2) и (3).

Тормоз прямого хода смонтирован в крышке (3) в виде дроссельного устройства с отверстиями, расположенными во втулке, к выступу (11) к которой пружиной прижат стакан (8) с уплотнением (13).

Через продольные и поперечные канавки отверстие (5) соединяется с поршневой камерой гидроцилиндра. Торможение обратного хода обеспечивается вторым дроссельным механизмом, установленным на штоке (6).

Стакан прижат к стопорному кольцу (19) на штоке и втулке (17) пружиной (20) и герметизирован уплотнениями (23) и (21).

Во втулке сделаны дроссельные отверстия (18), соединяющие подводящее отверстие (4) со штоковым пространством. 

В конце прямого хода поршень (7) давит на стакан и, сжимая пружину (12), смещает его внутрь втулки (9), перекрывая тем самым отверстия (10).

Это создает сопротивление выдавливанию масла из полости стакана и приводит к торможению.

При подаче давления через отверстие (5), масло по канавкам (14) и (15) попадает в поршневую область. Поршень, в свою очередь, начинает двигаться обратно.

При этом под действием пружины стакан переводится в исходное положение, открывая дроссельные отверстия, через которые его полость снова заполняется маслом.

На обратном ходе стакан (16) упирается в буксу, а втулка, продолжая движение, перекрывает дроссельные отверстия. Растущее сопротивление выдавливанию масла из полости стакана приводит к торможению штока.

При закачке жидкости в отверстие (4), она через соответствующие канавки попадает в штоковую область и начинает фазу прямого хода.

При этом под действием пружины стакан освобождается, открывая дроссели и пропуская масло в свою полость. Цикл завершен.

Для мощных гидравлических комплексов и установок ижевская компания-производитель «ГидроКуб» разработала надежные конструкции гидроцилиндров с принудительным торможением и предлагает широкий выбор моделей, решающих сверхзадачи.

Компетентные специалисты нашего производства совместно с научными консультантами предложат самую эффективную модель гидравлического источника энергии под ваши технические условия и параметры. Отдавайте предпочтение надежности, качеству и безопасности по выгодным ценам.

Источник: https://hydrocube.ru/gidrotsilindry-s-tormozheniem/

Принцип работы и применение гидроцилиндров

Современный мир пестрит множеством технических систем и средств, которые помогают облегчить жизнь человека вот уже не один десяток лет.

Причём многие из них настолько вошли в обиход, что мы не замечаем уже их присутствия, но при этом они выполняют важную работу, с которой человек не справился бы в одиночку.

Это особенно характерно для механических видов работ, которые преобладают в промышленности.

К таким средствам можно отнести гидроцилиндры. Их область применения очень широка, а конструкция достаточно проста.

Типовые составляющие

Гидроцилиндр — это объёмный гидравлический двигатель, совершающий обратно-поступательные движения, преобразующий гидравлическую энергию рабочей жидкости в механическую. В зависимости от особенностей условий, в которых он должен работать, его устройство может несколько отличаться, но типовые составляющие сохраняются.

Как видно на схеме, конструкция гидравлического цилиндра проста.

Корпус гильзы, гидропоршень, шток выполняются из металла, так как на них приходится большая нагрузка.

Штоковое уплотнение, поршневое уплотнение, грязесъёмник изготавливаются из маслостойкой резины, потому что в качестве рабочей жидкости используется масло.

Полость, в которой находится шток, называют штоковой, где же расположен поршень — поршневой. Рабочая жидкость не должна перетекать из поршневой полости в штоковую, для предотвращения этого используются уплотнения.

Принцип работы

Принцип работы гидроцилиндра, как отмечалось ранее, основан на преобразование энергии, то есть жидкость под давлением подаётся в поршневую полость и передаёт усилие на поршень со штоком. Управление подачей жидкости осуществляется распределителем, который входит в состав любой гидросхемы. Задняя и передняя проушины служат для закрепления гидроцилиндра в рабочем положении.

Разновидности двигателей

По положению штока:

  1. Однопозиционные.
  2. Двухпозиционные.

По виду рабочего звена:

  1. Плунжерные.
  2. Мембранные.
  3. Поршневые.
  4. Сильфонные.

Поршневые:

  1. С использованием одностороннего штока.
  2. С двухсторонним штоком.

По характеру хода поршня:

  1. Телескопические.
  2. Одноступенчатые.
Читайте также  Принцип работы четырехтактного двигателя внутреннего сгорания

С учётом условия торможения:

  1. Без торможения.
  2. С торможением.

Маркировка по ГОСТ

Из-за большого количества типов и видов гидроцилиндров была принята их стандартизация в соответствии с ГОСТ 2 Г52-1-86. Форма обозначения шифров по ГОСТ состоит из девяти знаков:

  1. Тип гидравлического цилиндра (1 – поршневой, 2 – плунжерный, 3 – телескопический).
  2. Направление действия (1- одностороннего, 2 – двухстороннего).
  3. По возможности торможения (1 – без торможения, 2 – с торможением).
  4. Способ крепления (1 – на лапах, 2 – фланцевый, 3 – на проушинах, 4 – на цапфах, 5 – с закладными полукольцами и резьбой на штоке, 6 – с приваркой задней крышки и резьбой на штоке).
  5. Диаметр поршня в миллиметрах.
  6. Диаметр штока в миллиметрах.
  7. Величина хода в миллиметрах.
  8. Климатическое исполнение.
  9. Категория размещения.

Назначение и область применения

Гидроцилиндры позволяют использовать значительные усилия для перемещения объектов в разных плоскостях при условии достаточно малых габаритов конструкции таких систем, поэтому область их применения достаточно обширна.

Наиболее распространёнными устройствами, в которых используются гидравлические цилиндры, являются: пресса, гидродомкраты.

Ниже представлена гидросхема пресса с использованием гидроцилиндра одностороннего действия.

Экспликация:

Резервуар для рабочей жидкости.

  1. Вентиль.
  2. Плунжер пресса.
  3. Рабочий цилиндр.
  4. Трубопровод.
  5. Манометр.
  6. Клапан нагнетательный.
  7. Плунжер насоса.
  8. Цилиндр насоса.
  9. Клапан всасывающий.

Прессы используются при производстве вина для отжима жмыха уже довольно долгое время.

Они позволяют экономить время и обрабатывать большие объёмы виноградных ягод.

Можно также встретить их в установках, которые предназначены для отжима оливкового и подсолнечного масел.

Гидродомкраты широко применяют в автомастерских.

Следует отметить, что использование гидравлических цилиндров зависит от давления, которое развивается насосом, а также от вида рабочей жидкости.

Состав этой жидкости и ее физико-химические параметры должны обеспечивать сохранение стенок корпуса в исправном состоянии даже при попадании воды в неё.

Любой гидравлик скажет вам, что гидравлический цилиндр для пресса можно сделать своими руками из старого гидравлического домкрата, так как он фактически является простейшим гидроцилиндром. Это хорошо видно на его разрезе.

Гидравлические цилиндры благодаря своей простоте и надёжности конструкции, возможности использовать их в условиях ограничений по габаритам заняли весомое место среди механических систем, которые использует человек в своём обиходе. Сфера их применения весьма обширна: промышленность, автотранспорт, пищепром, строительство и др. Фактически они стали незаменимы и держат свою позицию уже много десятков лет.

Источник: https://obrabotkametalla.info/mexanizm/gidravlicheskij-cilindr

Новости и события компании Каскад

Гидроцилиндры — это довольно распространенные механизмы, которые используются во всех видах спецтехники (экскаваторы, автокраны, бульдозеры, автовышки, краны, манипуляторы, бетононасосы, погрузчики, компрессоры, самосвалы, гидромолоты, грейдеры и др.). Гидроцилиндр по принципу действия похож на пневмоцилиндр, только вместо воздуха в гидроцилиндрах движущей силой становится жидкость —  вода  или масло.

Компания КАСКАД более 20 лет специализируется на изготовлении и ремонте гидро- и пневмоузлов для техники и станков, прессов и другого производственного оборудования.

Гидроцилиндры бывают двух типов действия – односторонние и двухсторонние. Односторонние цилиндры могут работать только в одном направлении.

В движение они приводятся с помощью возрастающего давления рабочей жидкости в полости цилиндра. В начальное же положение они возвращаются с помощью работы пружины.

Что касается двусторонних поршней, то они мощнее односторонних, так как при приведении гидроцилиндра в действие ему не нужно преодолевать возвратную силу пружины.

Кроме того, двусторонние гидроцилиндры могут работать в двух направлениях.

Так же существуют телескопические гидроцилиндры.

Они необходимы для того, чтобы при небольшом размере самого цилиндра обеспечить больший ход поршневого штока, что необходимо для работы кранов различного назначения. Цилиндры данного типа также используются в грузовых машинах для поднятия кузовной части автомобиля.

Характеристики гидроцилиндров и их разновидности

Гидроцилиндры являются важной высоконагруженной частью механизмов, применяемой при производстве станков, гидропрессов, специального оборудования, а также огромного количество спецтехники (экскаваторов, погрузчиков, тракторов, всевозможных подъемных устройств и механизмов).

Также использование гидроцилиндров является относительно безопасным и осуществляется достаточно просто.

Производимые поршнем движения по возвратно-поступательной траектории, дают возможность осуществлять передачу усилия в нужном направлении.

В основе этого процесса лежит принцип гидростатического воздействия столба жидкости на шток гидроцилиндра.

Поэтому использование различных видов гидроцилиндров имеет большую распространенность. В свою очередь проектировщики пытаются постоянно дорабатывать и усовершенствовать гидроцилиндры под возникающие задачи.

Классификация гидроцилиндров логично возникает из особенностей конструкции самого устройства, в результате которой все гидроцилиндры делятся на  односторонние и двухсторонние.

Отличие односторонних от двухсторонних гидроцилиндров состоит в том, что обратный ход штока гидроцилиндра происходит благодаря влиянию наружного приводимого усилия, а двухсторонние имеют рабочий ход в обе стороны.

Также классификация гидроцилиндров возможна по типу действия устройств. При этом можно выделить основные — телескопические, поворотные и поршневые гидроцилиндры.

Поворотные гидроцилиндры применяются тогда когда необходимо произвести деформацию некоторого оборудования, поршневые с действием двухстороннего типа часто применяют  в приводах различной спецтехники.

Очень часто при производстве спецтехники используют телескопические цилиндры, которые могут содержать от двух и более вложенных отдельных цилиндров.

Такие гидроцилиндры применяют силовой принцип, так что общий ход штоков превосходит длину самого корпуса цилиндра.

В основном силовые телескопические цилиндры используют при производстве автокранов.

Важным параметром при выборе гидроцилиндра является (номинальное) давление, ход и диаметр штока и поршня.

Основополагающим фактором конечно является сама номинальная мощность гидроцилиндра, а диаметр поршня и штока характеризуют рабочее усилие совершаемое устройством.

Устройство гидроцилиндров.

Гидроцилиндр – это самый простой образец двигателя. Выходное (подвижное) звено, которым может быть шток, плунжер или же сам корпус цилиндра, осуществляет возвратно-поступательное движение.

Основные параметры, которыми характеризуют все гидроцилиндры – это внутренний диаметр, ход поршня, диаметр штока и номинальное давление рабочей жидкости.

Наименование компонентов гидроцилиндра:

Крышка – 1;  Гильза – 2;  Гайка – 3;  Кольцо – 4;  Шайба – 5; Манжета – 6; Кольцо – 7; Поршень – 8; Кольцо – 9; Шайба – 10; Кольцо пружинное – 11; Кольцо подворотниковое – 12; Манжета – 13; Кольцо – 14; Крышка – 15; Грязесъемник – 16; Кольцо пружинное – 17; Подшипник – 18; Шток – 19; Втулка – 20.

Гидроцилиндры бывают нескольких видов: поршневые, телескопические, плунжерные, двустороннего и одностороннего действия. По типу закрепления гидроцилиндры делятся на модели с шарнирным креплением и жестким.

Гидроцилиндр одностороннего действия совершает усилие на подвижном звене, которое направлено только в одну сторону (рабочий ход цилиндра).

В противоположном направлении подвижное звено просто перемещается обратно под действием силы тяжести или возвратного механизма, например, пружины.

У этих цилиндров есть лишь одна рабочая плоскость.

У гидроцилиндров двустороннего действия возможностей несколько больше. У них две рабочих плоскости, то есть рабочие усилия на выходном звене они могут создавать в двух направлениях.

Чтобы обеспечить возвратно-поступательное движение жидкость поочередно поступает под давлением в полости цилиндра. Когда одна из полостей наполняется жидкостью, другая соединяется со сливом.

У гидроцилиндра две полости: штоковая полость, в которой располагается шток, и поршневая.

Гидроцилиндры — изготовление и ремонт в Нижнем Новгороде

Даже если вы прекрасно знаете устройство гидроцилиндра, осуществить его ремонт в кустарных условиях или же собрать свой собственный цилиндр – довольно нелегкая задача.

Для этого нужно специальное оборудование и навыки. Поэтому с такими вопросами лучше обратиться к опытным профессионалам.

Компания «КАСКАД» специализируется на ремонте гидроцилиндров, а также изготовлении гидроцилиндров по вашим заказам.

Наша компания занимается всем спектром работ, связанных с гидроцилиндрами.

Наши работники занимаются ремонтом штока гидроцилиндров, ремонтируют гидроцилиндры для спецтехники, такой как погрузчики, асфальтоукладчики, экскаваторы, бетононасосы, автокраны, краны манипуляторы, другой строительной и коммунальной техники и производственных машин. Также мы можем изготовить гидроцилиндр по предоставленным вами чертежам или образцам. Мы гарантируем высокое качество и короткие сроки работы.

Купить гидроцилиндры: одностороннего, двухстороннего действия, плунжерные, телескопические, двухштоковые и тандемные, аутригеры, гидроцилиндры с демпфированием хода. Низкие цены.

Купить запчасти и комплектующие для гидроцилиндров: буксы, поршни, уплотнения, проушины, бонки, штоки.

Ремонт гидроцилиндров: профессионально, быстро, гарантия качества.

Источник: http://www.kaskadnn.ru/company/events/77-gidrotsilindry-ustrojstvo-i-kharakteristiki

Гидроцилиндр: принцип работы, устройство и применение

Данный прибор в общем смысле представляет из себя объемный двигатель с возвратно-поворотными или возвратно-поступательными движениями.

Принципы работы гидроцилиндра широко используются в космонавтике, авиации, строительстве дорог, а также на подъемно-транспортных машинах и в землеройной отрасли.

Механизм нашел применение в различном оборудовании, включая кузнечнопрессовые машины и металлорежущие станки.

Описание устройства

Если рассмотреть простейший случай, то можно сказать, что гидроцилиндр — это гильза в форме цилиндрической трубки с внутренней поверхностью, подвергшейся тщательной обработке.

Внутри устройства находится специальный поршень с манжетами в виде уплотнений из резины. Последние служат для того, чтобы рабочая жидкость не перетекала через разделенные полости цилиндра.

В эксплуатации применяются особые минеральные масла. Устройство и принцип работы гидроцилиндра подразумевают подачу жидкости в полость.

Поршень получает определенное давление и начинает перемещаться.

Правильный подбор устройства предполагает знание некоторых важных характеристик. Для начала следует выбрать подходящий диаметр поршня, то есть значение толкающего или тянущего усилия гидроцилиндра.

Немалую роль играет также и значение диаметра штока. Выбирается этот параметр в зависимости от требуемой грузоподъемности и уровня динамической нагрузки.

При неверно подобранном значении возможно изгибание штока в процессе эксплуатации. Ход поршня, в свою очередь, влияет на направление движения рабочего органа и общие размеры устройства в разложенном состоянии.

В собранном виде габариты определяются расстояниями по центрам. Способ крепления гидроцилиндра зависит от его конструктивного исполнения.

На полированную поверхность стержня передается усилие от поршня через шток. Правильное направление определяется при помощи грундбукса.

Читайте также  Принцип работы блокировки МТЗ 82

Процессы подвода и отведения рабочей жидкости в цилиндре происходят через две укрепленных в гильзе крышки. Также у штока присутствует уплотнение из нескольких манжет.

Первая из них служит для предотвращения утечки рабочей жидкости из гидроцилиндра, а вторая собирает попадающую внутрь грязь.

Подвижный механизм и шток на резьбе соединяются специальной деталью или проушиной, которая обеспечивает подвижное закрепление корпуса агрегата.

Существует два основных принципа работы гидроцилиндра — с управлением при помощи гидрораспределителя или благодаря определенным средствам для регулировки гидравлического привода. При этом все действующие механизмы изготавливаются с повышенными показателями прочности и надежности. Конструктивные элементы вроде цилиндра и блока управления функционируют при высоких давлениях до 32 МПа. Для того чтобы лучше понять механизмы действия таких агрегатов, следует рассмотреть их основные актуальные разновидности.

Функционирование гидрозамков

Конструктивное исполнение данного элемента базируется на том, к какому типу принадлежит гидроцилиндр.

Для одностороннего устройства характерно наличие седла, запорно-регулирующего элемента в форме шарика, поршня с толкателем, а также пружины.

Принцип работы гидроцилиндра и его замка заключается в том, что при отсутствии давления в линии управления рабочая жидкость перетекает из одного канала в другой, тем самым сдвигая шарик.

Однако обратного хода не происходит, потому как под действием потока запорно-регулирующий элемент крепко прижимается к седлу. Если же давление в линии управления присутствует, то рабочая жидкость беспрепятственно перемещается между двумя каналами.

В сдвоенном гидрозамке совмещаются сразу два обратных клапана. Они располагаются в одном корпусе так, что линия управления каждого из них соединяется со входом другого.

Принцип работы гидрозамка гидроцилиндра в таком случае основан на том, что рабочая жидкость движется в обратном направлении только при наличии давления в отсеке.

При этом каждая из двух сторон механизма работает независимо.

Варианты конструкции

Среди основных типов отмечают плунжерные, поршневые и телескопические устройства.

Принцип работы плунжерного гидроцилиндра подразумевает подачу рабочей жидкости в полость, где плунжер начинает свое смещение из-за действия повышенного давления.

Вернуться в исходное состояние агрегат способен благодаря воздействию внешнего усилия на торец штока.

Поршневые гидроцилиндры наиболее распространены.

Основным отличием таких устройств от плунжерных является возможность к созданию толкающего или тянущего усилия.

Штоковая полость сообщается через сапун с атмосферой, однако попадания частиц пыли и грязи на рабочую поверхность не происходит.

Цилиндр для пресса гидравлический: принцип действия и сферы применения гидроцилиндров

Сами гидросистемы известны довольно давно и широко применяются во многих агрегатах как промышленного, так и бытового плана. Сами того не осознавая, мы сталкиваемся с ними каждый день на улицах и на работе.

Самый распространённый пример гидроцилиндра, который вы почти наверняка держали в руках, это банальный автомобильный домкрат.

Принцип его действия, по своей сути, ничем не отличается от аналогичных гидроцилиндров для прессов или плунжерных систем экскаватора.

Применение гидроцилиндров

Основной областью применения гидравлических цилиндров уже долгое время являются всевозможные прессы.

С незапамятных времён их применяли в винной промышленности.

Другим известным примером использования прессов можно считать давление масел (подсолнечного или оливкового).

На сегодняшний день такие устройства стали значительно мощнее и их применение в промышленности намного шире. Невозможно представить себе завод или авторемонтную мастерскую, в которых не применяли бы гидравлические прессы.

Не менее распространёнными они стали и в быту. Масса инструментов оснащены гидравлическими цилиндрами. Ну а тот, кто занимается заготовкой соков, наверняка знает о них не понаслышке.

Прессы различной мощности и конструкции, массово производятся всевозможными «Кулибиными» в гаражных условиях.

Чаще всего, в таких чудо-устройствах используют старые домкраты от грузовиков, которые, по своей сути, являются теми же гидравлическими цилиндрами и могут выдать довольно серьёзное усилие.

Принцип действия

Принцип работы гидросистем заключается в передаче усилия при помощи перекачки жидкости.

Дело в том, что они почти не сжимаются под давлением и, по этой причине, прекрасно подходят для передачи, порой очень больших, усилий.

Согласно закону Паскаля, при подаче, жидкость оказывает равное действие на все одинаковые по площади поверхности, что в конкретном приложении означает – меньшим усилием, на меньшей площади, можно уравновесить большее, на большей площади.

По сути, получается нечто вроде гидравлического редуктора. При этом усилие, приложенное к меньшей плоскости, на большей увеличится пропорционально их размеру.

Именно этот принцип лежит в основе всех гидравлических систем. Помимо кажущейся его простоты и гибкости применения, существует несколько основных плюсов таких устройств:

  • чрезвычайно высокая эффективность при работе с большими нагрузками (транспортировке больших грузов или приложении больших усилий);
  • возможность обеспечения высокой точности настройки;
  • незаурядная надёжность (гидравлические системы легко защищаются от перегрузок с помощью предохранительных клапанов стравливания избыточного давления);
  • относительно небольшие габариты оборудования и экономичность при эксплуатации.

Составляющие части гидравлического пресса

Гидравлические системы состоят из нескольких основных компонентов: привода (гидромотора, гидроцилиндра), насоса, аварийного клапана, резервуара.

Производительность всей системы зависит от давления, нагнетаемого насосом масла, диаметра рабочей поверхности поршня, габаритов цилиндра и максимального допустимого давления.

Одной из наиболее важных частей гидравлических систем является жидкость, нагнетаемая насосом и приводящая в движение привод.

К ней предъявляется ряд требований, в том числе химический состав, пределы рабочих температур, плотность, склонность к окислению.

Важным свойством таких жидкостей является обводнение – способность сохранять рабочие качества системы при попадании влаги.

Семьдесят процентов отказов гидросистем происходят из-за качества и состояния масла. Сорок, из них, непосредственно зависят от эксплуатационных его параметров. Остальные шестьдесят непосредственно связаны с ходом работы.

К числу таких неприятностей относят повышенный износ элементов системы, коррозия металлических поверхностей (что нередко приводит к заклиниванию гидравлических цилиндров или повреждению герметизирующих прокладок), повышенную вязкость масел или их загрязнение водой, пылью или воздухом.

Все это, мягко говоря, не способствует безаварийной работе как системы в целом, так и отдельных её узлов.

Такие системы применяются в следующих сферах:

  • В промышленном оборудовании (гидравлических прессах, манипуляторах или формовочных машинах для пластмасс).
  • Мобильной технике (в экскаваторах, в кранах, в строительном оборудовании и даже в самолётах).
  • В спецтехнике, такой как, тренажёры и испытательные стенды.

Разновидности и особенности гидросистем

В большей части перечисленного выше оборудования установлены гидросистемы с использованием гидроцилиндров.

Все они, в свою очередь, делятся на гидроцилиндры одностороннего или двухстороннего действия.

В зависимости от способа установки и крепления к машине гидроцилиндры можно разделить на два типа: гидроцилиндры жёстко закреплённые; гидроцилиндры шарнирные.

По специфике их работы выделяют несколько видов:

  • поршневые;
  • плунжерные;
  • телескопические;

Цилиндры одностороннего действия рассчитаны на приложение усилия гидравлической жидкости к выходному элементу (поршню или плунжеру), в одном направлении. Обратный ход осуществляется за счёт распрямления пружины или под действием силы тяжести (либо за счёт работы другого цилиндра или механизма).

Надо учитывать, что в случае применения гидравлического цилиндра с возвратной пружиной, усилие прямого хода будет меньше, чем аналогичного по размерам двунаправленного. Происходит это потому, что в момент нагнетания жидкости, помимо прочих нагрузок, преодолевается сила упругости пружины.

Что касается двунаправленных гидравлических цилиндров, то в них используется конструкция с двумя рабочими плоскостями.

Это позволяет прилагать усилие в двух направлениях.

При этом одна из частей цилиндра подключается к сточному клапану, а другая к нагнетательному.

Для этого варианта цилиндра тоже существует нюанс. При поступательном движении поршня производимое усилие больше, а скорость меньше чем при возвратном.

Это связано с разницей рабочих площадей (речь идёт об эффективном сечении поршня) к которым прилагается давление жидкости.

При обратном движении, площадь меньше за счёт диаметра «выходного элемента» гидроцилиндра.

Наверное, стоит упомянуть и о телескопических гидроцилиндрах, хоть они и очень редко используются в прессах.

Такая разновидность применяется в случаях, когда требуется вылет штока, значительно превышающий длину корпуса самого цилиндра.

Выполнена эта конструкция как несколько вложенных один в другой цилиндров, корпус каждого следующего в которой служит штоком, предыдущей.

Производятся они в вариантах с однонаправленным, так и двунаправленным движением. Такой агрегат проще всего встретить на самосвалах.

В случае изготовления прессов в кустарных условиях, принцип их действия ничем не отличается от их промышленных аналогов.

Единственное, что в таких устройствах, в большинстве случаев, применяют ручные насосы.

Из-за малых габаритов и сравнительно небольших усилий, нет острой необходимости в громоздких и достаточно дорогостоящих масляных насосах.

Эксплуатация и обслуживание

Мы рассмотрели лишь основные параметры и разновидности гидроцилиндров, применяющихся в прессах, промышленной и спецтехнике. Они являются одной из основных частей гидросистем, но отнюдь не единственной.

Работа этих мощных устройств зависит от качества и состояния множества узлов: насосов, фильтров, клапанов, масляных магистралей.

Каждый из них, исполняет свою важную функцию, а потому тоже нуждается в правильной эксплуатации и тщательном обслуживании.

При работе с такими устройствами, как гидроцилиндры, не стоит также забывать о технике безопасности.

Имейте в виду, что вы работаете с оборудованием, производящим усилие от нескольких сотен килограмм до нескольких десятков тон.

Неосторожное обращение с ними может привести к серьёзным увечьям.

  • Александр Романович Чернышов
  • Распечатать

Источник: https://stanok.guru/oborudovanie/press/gidravlicheskie-cilindry-i-tipy-gidrocilindrov-v-pressah.html

Понравилась статья? Поделить с друзьями: